Electrostatic *vs*. Orbital Control in π -Facial Diasteroselection: A PM3 SCF-MO Study of Electrophilic Reactivity in 7-Methylenenorbornanes

Howard B. Broughton, ^a Stuart M. Green^b and Henry S. Rzepa^b

^a Merck, Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, UK; E-mail hbro@msdrl.com.

^b Department of Chemistry, Imperial College of Science, Technology and Medicine, London SW7 2AY, UK; E-mail rzepa@ch.ic.ac.uk.

PM3 calculations indicate that π -facial diastereoselection in the reaction between 2,3-*endo*-substituted 7-methylenenorbornanes and electrophiles such as Hg(OR)₂ or I⁺ is determined by electrostatic asymmetry whereas the reaction with BH₃ is controlled by orbital interactions.

Current theories of π -facial stereoselection by both nucleophilic and electrophilic reagents involve hyperconjugative¹ interactions between either an 'electron donor' σ -bond (the Cieplak model) or an 'electron acceptor' σ^* orbital (the Anh–Eisenstein model) antiperiplanar respectively to a developing σ or σ^* orbital on the reagent. Other factors, including electrostatic stabilisation, solvent and d-orbital metal control have also been proposed.² Amongst the many known examples of such stereoselection,³ reaction between alkene **1** (R = CO₂Me) and electrophilic reagents such as Hg(OAc)₂ or B₂H₆ to give predominantly **2** or **3** respectively was suggested⁴ to be a sterically neutral example supporting the Cieplak model, in which syn-attack favours the interaction between the bond marked σ_a and the antiperiplanar electrophilic σ^* orbital.

Fig. 1 Calculated PM3 electrostatic potential for (a) 1, $R = CO_2Me$, (b) 1, R = F, (c) 1, $R,R = -CH_2$ -, and (d) 8, contoured at 0.025 Hartree, with the negative potential attractive to an electrophile shown in blue. A quantitative measure of the asymmetry in the negative potential surrounding the double bond is given by the ratio of either the minimum value of the potential [*anti/syn* = 1.40 (PM3), 1.66 (*ab initio* 3-21G) for R = F; 1.46 (PM3) for $R = CO_2Me$; 0.845 (PM3) for $R, R = -CH_2$ -, 0.91 (PM3) for R, R = -O-] or of the integrated volumes of the two negative isovalued (-0.012 Hartree) components [*anti/syn* = 4.35 (PM3), 7.14 (*ab initio* 3-21G) for R = F; 4.55 (PM3) for $R = CO_2Me$; 0.65 (PM3) for $R, R = -CH_2$ -, 0.78 (PM3) for R, R = -O-]. Integrations were performed using a Monte-Carlo technique over 250 000 points, within a pre-defined box which completely encapsulated a given isopotential lobe.

We have recently suggested⁵ that π -facial stereoselection in the crystal packing of the chiral resolving agent **4** is due to an asymmetry between the two π -faces in the molecular electrostatic potential (MEP), the least negative being antiperiplanar to the electron-withdrawing C–CF₃ bond. In the diene **5**, *endo*-alkene stereoselection towards electrophilic reagents such as dichlorocarbene⁵ was attributed⁶ to a combination of antiperiplanar deactivation of the *exo*- π -bond by its stabilising interaction with the Cl–C σ^* orbital, together with asymmetry in the MEP favouring *endo*-attack. Whilst in, *e.g.*, **5** the orbital and electrostatic effects cooperate, we suggest that in **1** (R = CO₂Me) they are opposed. For the electrophile Hg(OAc)₂ in particular, we believe that the electrostatic component promotes *anti*-attack, contrary to the published interpretation⁴ that the metal reacts with **1** from the *syn*-face.

Localised reactant orbital energies⁷ represent one convenient means of assessing the component due to orbital control. For 1 (R = F), the two-centre PM3 SCF-MO⁸ localised orbital σ_a is revealed to be a better electron donor (-19.09 eV) in the Cieplak sense than is σ_s (-19.58 eV), favouring antiperiplanar interaction with the σ^* orbital of an electrophile approaching specifically from the *syn*-face. The electrostatic component, as revealed by the PM3 derived MEP,⁹ shows the *anti*-face to be the most attractive to an electrophile when R is electron withdrawing such as R = F or CO₂Me (Fig. 1), but favours the *syn*-face for substituents such as R,R = CH₂- or -O- (Fig. 1). Unlike 5 therefore, electrostatic and Cieplak type orbital control appear to act in opposing directions in 1, R = F or CO₂Me.

The overall balance between the opposing electrostatic and orbital direction for 1 (R = F) can be estimated by comparing the relative calculated enthalpies of both the anti and syn-complexes for various model electrophiles, E = Hg(OH)₂, BH₃, Zn(OH)₂, H⁺, I⁺ and :CCl₂, the last four corresponding to hitherto untested systems (Table 1). Such relative energies may be expected to be significantly more reliable than the absolute error quoted for PM3 (\pm 7.8 kcal mol⁻¹)⁸ due to a substantial cancellation of errors. For symmetrically bound ($r_{E-C8} \approx r_{E-C7}$) π -complexes such as Hg(OH)₂, Zn(OH)₂ or cyclic I⁺, the *anti*-isomers are calculated to be more stable, an effect we attribute in part to the large charges on the electrophile (I+, 0.83, Hg+, 0.75) favouring long-range electrostatic stabilisation by the electron-richer anti-π-face (Fig. 1). This predicted anti-preference in the preequilibrium¹⁰ would mean that subsequent ratedetermining nucleophilic attack by, e.g., water occurring anti to the complexed electrophile would result, for, e.g., E = $Hg(OAc)_2$, in the observed alcohol 2. This interpretation is consistent with experiment but does differ from the previously proposed syn-attack mechanism.⁴

In contrast, the more neutral and asymmetrical BH₃-alkene π -complexes ($r_{B-C8} < r_{B-C7}$) show a small calculated synpreference, increased when the transition states for BH₃ addition to the double bond are compared (Table 1), which is consistent with the known⁴ formation of isomer 3. In other systems where the positive charge resides not on the electrophile but more on carbon (i.e. the classical carbonium ions formed from $E = I^+$ or H^+) there is also a *syn*-preference, due we think to orbital rather than electrostatic stabilisation. The clearest effect is shown for the $H-C_7$ carbonium ion (E = H⁺); σ_a for the syn-complex (-23.70 eV) is stabilised relative to σ_a for the anti-isomer (-23.64 eV) via a Cieplak type interaction and $\sigma(H_{syn}-C^7, -24.81 \text{ eV})$ is more stable than $\sigma(H_{antr}-C^7, -C^7)$ -24.70 eV) because interaction of the Anh-Eisenstein type is possible with the C-F σ^* orbital. Another potentially stereoselective⁵ electrophilic reagent is :CCl₂, for which two isomeric transition states for addition to 1 (R = F) can be located.⁵ The more stable form 7 shows a small anti-prefer-

	1: R = F, F		$1: R, R = -CH_2 -$	
E	syn	anti	syn	anti
H^+	139.03	139.85	256.10	255.69
I ⁺ (cyclic)	151.42	150.06	268.60	269.23
I ⁺ (classical)	149.44	149.88	265.01	264.69
Hg(OH) ₂	-130.36	-134.00	-11.56	-9.36
$Zn(OH)_2$	-118.47	-122.30	1.59	0.93
BH_3^a	-50.93	-50.66	85.11	84.88
BH_3 transition state ^a	-39.49	-38.45	95.46	95.31
6	-7.36	-5.56	120.87	120.02
7	-10.41	-11.01	116.58	116.26

Table 1 Calculated PM3 $\Delta H_{\rm f}$ values in kcal mol⁻¹ for (1 cal = 4.184 J) for complexes between 1 and electrophile E

^a AM1 values.

ence, whereas the higher energy isomer **6**, which differs in the orientation of the carbene lone pair, clearly favours *syn* (Table 1). In each case for each pair of neutral *syn*- and *anti*-complexes, the difference in calculated dipole moment is <0.7 Debye, indicating that differential solvation effects will not appreciably influence the electrophilic stereoselectivity in moderately polar solvents.

The stereoselectivity is predicted to reverse when the electron-withdrawing R = F or CO_2Me substituents are replaced with the electron-rich $R, R = -CH_2$ -ring (Fig. 1). Thus the electrostatically controlled reaction with, *e.g.*, $Hg(OH)_2$ now favours *syn*-attack whilst the reactions with *e.g.*, $E = H^+$, I^+ or BH_3 now favour *anti*-attack (Table 1). For an alkene such as **8**, electrostatic discrimination is much smaller (Fig. 1) and here we predict that, *e.g.*, electrostatically dominated oxymercuriation might not be as highly selective as is observed for orbital-dominated hydroboration.¹¹ Our results also suggest that the hitherto unreported reactions between **1** and electrophiles such as $E = halogen^+$ and : CCl_2 or with substituents such as $R, R = -CH_2$ -or -O- may provide valuable further insights into the factors determining π -facial selectivity.

We thank Merck Sharp and Dohme and the SERC for financial support (to S. M. G.).

Received, 21st February 1992; Com. 2/00939K

References

N. T. Anh and O. Eisenstein, *Nouv. J. Chem.*, 1977, 1, 6; A. S. Cieplak, B. D. Tait and C. R. Johnson, *J. Am. Chem. Soc.*, 1989, 111, 4635; M.-H. Lin and W. J. LeNoble, *J. Org. Chem.*, 1989, 54,

997, 3836; S. S. Wong and M. N. Paddon-Row, J. Chem. Soc., Chem. Commun., 1990, 456.

- S. S. Wong and M. N. Paddon-Row, J. Chem. Soc., Chem. Commun., 1991, 327; S. D. Kahn and W. J. Hehre, J. Am. Chem. Soc., 1987, 109, 663; 1988, 110, 4625; T.-M. Chao, J. Baker, W. J. Hehre and S. D. Kahn, Pure. Appl. Chem., 1991, 63, 283; K. A. Durkin and D. Liotta, J. Am. Chem. Soc., 1990, 112, 8162; K. Burgess, W. A. van der Donk, M. B. Jarstfer and M. J. Ohlmeyer, J. Am. Chem. Soc., 1991, 113, 6139.
- 3 L. A. Paquette, L. W. Hetel, R. Gleiter, M. C. Bohm, M. A. Beno and G. G. Christoph, J. Am. Chem. Soc., 1981, 103, 7106; D. Mukherjee, Y.-D. Wu, F. R. Fronczek and K. N. Houk, J. Am. Chem. Soc., 1988, 110, 3328; E. Vedejs and W. H. Dent, J. Am. Chem. Soc., 1989, 111, 6861; G. Frenking, K. F. Kohler and M. T. Reetz, Angew. Chem., Int. Ed. Engl., 1991, 30, 1146; A. I. Meyers and R. H. Wallace, J. Org. Chem., 1985, 54, 2509; Y. D. Wu, J. A. Tucker and K. N. Houk, J. Am. Chem. Soc., 1991, 113, 5018.
- 4 G. Mehta and F. A. Khan, J. Chem. Soc., Chem. Commun., 1991, 18.
- 5 B. Halton and S. G. G. Russel, J. Org. Chem., 1991, 56, 5553; B. Halton, R. Boese and H. S. Rzepa, J. Chem. Soc., Perkin Trans. 2, 1992, 447.
- 6 H. S. Rzepa, M. L. Webb, A. M. Z. Slawin and D. J. Williams, J. Chem. Soc., Chem. Commun., 1991, 765.
- 7 P. G. Perkins and J. J. P. Stewart, J. Chem. Soc., Faraday Trans. 2, 1982, 78, 285.
- 8 J. J. P. Stewart, J. Comput. Chem., 1989, **10**, 209, 221. J. J. P. Stewart, J. Comput. Aided Mol. Design, 1990, **4**, 1.
- 9 F. J. Luque, F. Illas and M. Orozco, J. Comput. Chem., 1990, 11, 416, 909; G. G. Ferenczy, C. A. Reynolds and W. G. Richards, J. Comput. Chem., 1990, 11, 159; B. H. Besler, K. M. Merz and P. A. Kollman, J. Comput. Chem., 1990, 11, 431; H. B. Broughton, S. Green and H. S. Rzepa, J. Chem. Soc., Chem. Commun., 1992, 37.
- 10 I. H. Rajyaguru and H. S. Rzepa, J. Chem. Soc., Chem. Commun., 1987, 998; J. Chem. Soc., Perkin Trans. 2, 1987, 1819.
- 11 S. Srivastava and W. J. le Noble, J. Am. Chem. Soc., 1987, 109, 5874.